
Identifying critical attack assets in
dependency attack graphs

Reginald Sawilla
Defence R&D Canada – Ottawa

Xinming Ou
Kansas State University

This Technical Memorandum is an extended version of work published in the proceedings of the 13th
European Symposium on Research in Computer Security (ESORICS).

Defence R&D Canada – Ottawa
Technical Memorandum

DRDC Ottawa TM 2008-180

September 2008

RTO-MP-IST-076 11 - 1

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Principal Author

Original signed by Reginald Sawilla and Xinming Ou

Reginald Sawilla and Xinming Ou

Approved by

Original signed by Julie Lefebvre

Julie Lefebvre
Head/NIO Section

Approved for release by

Original signed by Pierre Lavoie

Pierre Lavoie
Head/Document Review Panel

c© Her Majesty the Queen in Right of Canada as represented by the Minister of National
Defence, 2008

c© Sa Majesté la Reine (en droit du Canada), telle que représentée par le ministre de la
Défense nationale, 2008

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 2 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Abstract

Attack graphs have been proposed as useful tools for analyzing security vulnerabilities in
network systems. Even when they are produced efficiently, the size and complexity of at-
tack graphs often prevent a human from fully comprehending the information conveyed. A
distillation of this overwhelming amount of information is crucial to aid network adminis-
trators in efficiently allocating scarce human and financial resources. This paper introduces
AssetRank, a generalization of Google’s PageRank algorithm which ranks web pages in
web graphs. AssetRank addresses the unique semantics of dependency attack graphs and
incorporates vulnerability data from public databases to compute metrics for the graph ver-
tices (representing attacker privileges and vulnerabilities) which reveal their importance in
attacks against the system. We give a stochastic interpretation of the computed values in the
context of dependency attack graphs, and conduct experiments on various network scenar-
ios. The results of the experiments show that the numeric ranks given by our algorithm are
consistent with the intuitive importance that the privileges and vulnerabilities have to an at-
tacker. The vertex ranks can be used to prioritize countermeasures, help a human reader to
better comprehend security problems, and provide input to further security analysis tools.

Résum é

On a proposé des graphes d’attaque comme outils utiles pour l’analyse des vulnérabilités
de sécurité des réseaux informatiques. Même lorsqu’ils sont produits de façon efficiente, la
taille et la complexité de ces graphes empêchent souvent un être humain de bien saisir toute
l’information ainsi présentée. Il est essentiel de distiller cette masse écrasante d’informa-
tion pour aider les administrateurs de réseau à allouer de façon efficiente leurs ressources
humaines et financières limitées. Dans ce document, on présente l’algorithme AssetRank,
une généralisation de l’algorithme PageRank de Google qui sert à classer les pages Web
dans des graphes Web. AssetRank traite la sémantique unique des graphes d’attaque à
dépendances et il attribue une mesure aux sommets (qui représentent les privilèges et les
vulnérabilités), ce qui indique leur importance dans des attaques contre un système. Nous
donnons une interprétation stochastique des valeurs calculées dans le contexte des graphes
d’attaque à dépendances et nous menons des expériences avec différents scénarios s’ap-
pliquant aux réseaux. Les résultats des expériences montrent que le classement numérique
produit par notre algorithme correspond à l’importance intuitive qu’un attaquant accorde
aux privilèges et aux vulnérabilités. Le classement ordonné des sommets peut être utilisé
pour établir l’ordre de priorité des contre-mesures, aider un lecteur humain à mieux cer-
ner les problèmes de sécurité et fournir des entrants pour d’autres outils d’analyse de la
sécurité.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 3

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 4 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Executive summary

Identifying critical attack assets in dependency attack
graphs

Reginald Sawilla, Xinming Ou; DRDC Ottawa TM 2008-180; Defence R&D
Canada – Ottawa; September 2008.

Background: An attack graph is a mathematical abstraction of the details of possible at-
tacks against a specific network. However, even for small networks, attack graphs are too
large and complex for a human to fully comprehend. While a user will quickly under-
stand that attackers can penetrate the network, it is essentially impossible to know which
privileges and vulnerabilities are the most important to the attackers’ success. Computer
network administrators require a tool which can distill the overwhelming amount of infor-
mation into a list of priorities that will help them to efficiently utilize scarce human and
financial resources.

This paper is an extended version of [1] and a continuation of the work in [2].

Principal results: This paper introduces AssetRank, a generalization of Google’s Page-
Rank algorithm which ranks web pages in web graphs. AssetRank consumes a listing of
assets and their dependencies and generates an understanding of their value by assigning
a ranking to the assets based upon the system dependencies. Our first contribution al-
lows AssetRank to treat vertices typed as AND and OR correctly based on their logical
meanings. The second contribution is a generalization of PageRank’s single system-wide
damping factor to a per-vertex damping factor. This generalization allows AssetRank to ac-
curately model the various likelihoods of an attacker’s ability to obtain privileges through
means not captured in the graph (out-of-band attacks). The third contribution is leveraging
publicly available vulnerability information (e.g. Common Vulnerability Scoring System
(CVSS)) through parameters in AssetRank so that the importance of security problems
is computed with respect to vulnerability attributes such as attack complexity and exploit
availability. The fourth contribution is that our generalized ranking algorithm allows net-
work defenders to obtain personalized AssetRanks to reflect the importance of attack assets
with respect to the protection of specific critical network assets. The fifth contribution is
an interpretation of the semantics of AssetRank values in the context of attack graphs.

Significance of results:The numeric value computed by AssetRank is a direct indicator
of how important the attack asset represented by a vertex is to a potential attacker. The
algorithm was empirically verified through numerous experiments conducted on several
example networks. The rank metric will be valuable to users of attack graphs in better
understanding the security risks, in fusing publicly available attack asset attribute data, in

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 5

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

determining appropriate mitigation measures, and as input to further attack graph analysis
tools.

Future work: We would like to explore the fusing of business priorities and implementa-
tion costs with AssetRank values so that the resulting metric can be used immediately by
a system administrator to generate a course of action or automatically implement security
hardening measures. We would also like to conduct experiments on operational networks
to better understand the advantages and limitations of our proposed algorithm, along with
ways of improving it. Finally, we would like to determine AssetRank’s rate of convergence
and its stability under perturbations.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 6 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Sommaire

Identifying critical attack assets in dependency attack
graphs

Reginald Sawilla, Xinming Ou ; DRDC Ottawa TM 2008-180 ; R & D pour la
défense Canada – Ottawa ; septembre 2008.

Contexte : Un graphe d’attaque est une abstraction mathématique des détails d’attaques
possibles contre un réseau particulier. Toutefois, même pour de petits réseaux, la taille et
la complexité des graphes ainsi obtenus sont trop grandes pour qu’un être humain puisse
comprendre pleinement l’information qu’ils contiennent. Un utilisateur peut comprendre
rapidement que des attaquants peuvent pénétrer dans le réseau, mais il est essentiellement
impossible de savoir quels sont les privilèges et les vulnérabilités qui ont le plus d’im-
portance pour les attaquants. Les administrateurs de réseau ont besoin d’un outil qui peut
distiller la masse écrasante d’information de façon à créer une liste de priorités qui les
aidera à utiliser de façon efficiente leurs ressources humaines et financières limitées.

Ce document est une version allongée du document [1] et la suite du travail décrit dans le
document [2].

Principaux r ésultats : Ce document présente l’algorithme AssetRank, une généralisation
de l’algorithme PageRank de Google, qui sert à classer les pages Web sous forme de
graphes Web. AssetRank traite une liste d’actifs ainsi que de leurs dépendances et il établit
leur valeur en attribuant un rang aux actifs en fonction de leurs dépendances envers le
système. Notre première contribution permet à AssetRank de traiter correctement les som-
mets qui sont catégorisés AND et OR en fonction de leur signification logique. Notre
seconde contribution est une généralisation du facteur d’amortissement unique de Page-
Rank s’appliquant à l’ensemble du système afin de produire un facteur d’amortissement
propre à chaque sommet. Cette généralisation permet à AssetRank de modéliser avec exac-
titude les probabilités qu’un attaquant puisse obtenir des droits grâce à des moyens qui ne
sont pas saisis dans le graphe (attaques hors bande). Notre troisième contribution consiste
à tirer parti des renseignements disponibles publiquement au sujet des vulnérabilités (p.
ex. le Common Vulnerability Scoring System (CVSS)) au moyen de paramètres d’As-
setRank, ce qui a pour effet que l’importance des problèmes de sécurité est calculée en
fonction des attributs de vulnérabilité, comme la complexité de l’attaque et la disponibilité
de son code d’exploitation. La quatrième contribution de notre algorithme de classement
généralisé permet aux défendeurs des réseaux d’obtenir des classements d’actifs correspon-
dant à l’importance des actifs d’attaque pour la protection d’actifs essentiels du réseau. La
cinquième contribution est une interprétation de la sémantique des valeurs de classement
dans le contexte de graphes d’attaque.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 7

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Importance des ŕesultats : La valeur numérique calculée par AssetRank est un indica-
teur direct de l’importance qu’à un actif objet d’attaque, représenté par un sommet, pour
un attaquant potentiel. L’algorithme a été vérifié empiriquement au cours de nombreuses
expériences qui ont porté sur divers réseaux représentatifs. Les valeurs des rangs obtenues
seront utiles pour que les utilisateurs des graphes d’attaque puissent mieux comprendre les
risques sur le plan de la sécurité, pour intégrer les données publiques sur les attributs des
actifs attaqués et pour déterminer les mesures de réduction du risque appropriées. Elles se-
ront aussi utiles comme entrants appliqués à d’autres outils d’analyse de graphes d’attaque.

Travaux futurs : Nous aimerions explorer les façons d’incorporer les priorités opérationnelles
et les coûts de mise en oeuvre avec les valeurs produites par AssetRank afin que les va-
leurs ainsi obtenues puissent être utilisées immédiatement par un administrateur de réseau
pour générer une marche à suivre ou mettre en oeuvre automatiquement des mesures de
durcissement de la sécurité. Nous aimerions aussi mener des expériences sur des réseaux
opérationnels pour mieux comprendre les avantages et les limites de l’algorithme que nous
proposons et trouver des façons de l’améliorer. Enfin, nous souhaitons déterminer le taux
de convergence d’AssetRank ainsi que sa stabilité en présence de perturbations.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 8 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Acknowledgements

The authors thank Craig Burrell for many valuable discussions. We also thank the numer-
ous people who provided helpful comments on the paper.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 9

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 10 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

1 Introduction

An attack graph is a mathematical abstraction of the details of possible attacks against a
specific network. Various forms of attack graphs have been proposed for analyzing the
security of enterprise networks [3, 4, 5, 6, 7, 8]. Recent advances have enabled computing
attack graphs for networks with thousands of machines [4, 6]. Even when attack graphs can
be efficiently computed, the resulting size and complexity of the graphs is still too large
for a human to fully comprehend [9, 10, 11]. While a user will quickly understand that
attackers can penetrate the network, it is essentially impossible to know which privileges
and vulnerabilities are the most important to the attackers’ success. Network administrators
require a tool which can distill the overwhelming amount of information into a list of
priorities that will help them to secure the network, making efficient use of scarce human
and financial resources.

The problem of information overload can occur even for small-sized networks. The ex-
ample network shown in Figure1 is from recent work by Ingolset al. [4]. Machine A is
an attacker’s launch pad (for example, the Internet). Machines B, C, and D are located in
the left subnet and machines E and F are in the right subnet. The firewall FW controls the
network traffic such that the only allowed network access between the subnets is from C
and D to E. All of the machines have a remotely exploitable vulnerability.

We applied the MulVAL attack graph tool suite [6] to the example network. The resulting
attack graph can be found in AppendixA. Even for a small network, the attack graph is
barely readable on a full page. Assuming the attack graph can be read, it is still difficult for
a human to capture the core security problems in the simple network. Essentially, the soft-
ware vulnerabilities on hosts C and D will enable an attacker from A to gain local privileges
on the victim machines, and use them as stepping stones to penetrate the firewall, which
only allows through traffic from C and D. In this example, all the machines can potentially
be compromised by the attacker, and all the vulnerabilities on the hosts can play a role in
those potential attack paths. However, the vulnerabilities on C and D, and the potential

Figure 1: An example network

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 11

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

compromise of those two machines, are crucial for the attacker to successfully penetrate
into the right subnet, presumably a more sensitive zone. The attack graph produced by
MulVAL does reflect this dependency, but a careful reading of the graph is necessary to
understand which graph vertices are the most important to consider. When the network
size grows and attack paths become more complicated, it is insurmountably difficult for a
human to digest all the dependency relations in the attack graph and identify key problems.

Besides the dependency relations represented in an attack graph, another important factor in
determining the criticality of an identified security problem is the likelihood the attack path
can lead to a successful exploit. For example, both hosts C and D can be exploited remotely
by the attacker on host A. Assume that the vulnerability on host C is only theoretical and
no one has successfully produced a proof-of-concept exploit, whereas the vulnerability
on host D has a publicly available exploit that works most of the time. Obviously the
vulnerability on D is more likely to be exploited than the vulnerability on C and so its
elimination deserves prioritization.

In the past five years, significant resources have gone into standardizing the definition of
the attributes of reported security vulnerabilities. Most notably, the Common Vulnerability
Scoring System (CVSS)1 is a standard for sharing the attributes of discovered security
vulnerabilities among IT security professionals. It represents not just a single numeric
score, but a metric vector that describes various aspects of a vulnerability such as its access
vector, access complexity and exploitability. The CVSS metric vector is included in the
National Vulnerability Database (NVD)2 for every vulnerability reported in NVD. The
metrics provide crucial baseline information for automated security analysis. However,
the metrics themselves can only give limited information without an understanding of the
global security interactions in an enterprise environment. For example, further assume that
the vulnerability on B is the same as the one on D. Since B does not have access into the
right subnet, its vulnerability is less critical than the one on D. In the scenario just described,
our algorithm gives first priority to the vulnerability on D, followed by the vulnerability on
B, and then C. This prioritization is intuitive since D is easy to exploit and gives access
to the right subnet; B is easy to exploit and gives access to D; and since only proof-of-
concept code exists to exploit C, it warrants the lowest priority. All of the parameters
in our algorithm can be tuned to model attackers of various levels of sophistication and
technique.

In order to determine the relative importance of security problems in a network, both the
dependency relationships in the attack graphand the attributes of the security problems
need to be considered. We present an approach which automatically digests the depen-
dency relations in an attack graph as well as the baseline information of the vulnerability
attributes to compute the relative importance of attacker assets (the graph vertices) as a
numeric metric. The metric gauges the importance of a privilege or vulnerability to an

1. http://www.first.org/cvss/
2. http://nvd.nist.gov/cvss.cfm

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 12 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

http://www.first.org/cvss/
http://nvd.nist.gov/cvss.cfm

attacker (and hence the defender). Our approach fuses attack graphs and baseline security
metrics such as CVSS, to make both of them more useful in security analysis. The product
is primarily a defensive tool which gives the advantage to network defenders since they
have full information about their network and can build a complete attack graph whereas
attackers will usually have incomplete information.

Our algorithm is based on the Google PageRank algorithm [12] which ranks the importance
of web pages. It is important to note that our work is significantly different from previous
work in applying Google PageRank algorithm to attack graphs [13].

First, we have approached the problem using dependency attack graphs which have very
different semantics from the state-enumeration attack graphs used in the previous work
(see Section2). PageRank is a generic graph data-mining algorithm that has been applied to
various types of directed graphs but it has not yet been applied to dependency attack graphs.
The interpretation of the computed rank values are completely different for different graph
semantics and it is important to understand what the values mean in any new context.

Second, our work extends the original PageRank algorithm by generalizing its damping
factor and providing the ability to operate on heterogeneous graphs with both AND and OR
vertices. Our work shows how our PageRank generalizations, the dependency matrix, and
personalization vector can be set to obtain rich security insight from the fusion of attack
graphs with attack asset attributes, such as the maturity of exploit code. Our extended
PageRank algorithm is named AssetRank.

Dependency attack graphs contain both AND and OR vertices. The metric the AssetRank
algorithm computes indicates the value of an attack asset (a graph vertex) to a potential
attacker. Attack assets consist of privileges, such as the ability to execute code on a par-
ticular machine, and facts, such as the existence of vulnerable software on a host. We give
a stochastic interpretation of the asset ranks in the context of network attacks and conduct
experiments on various network settings. The results of our experiments show that the ver-
tex ranks computed by our algorithm are consistent, from a security point of view, with the
relative importance of the attack assets to an attacker. The asset ranks add value to both
attack graphs and CVSS vulnerability data. The asset ranks can be used to prioritize coun-
termeasures, help a human reader to better comprehend security problems, and provide
input to further security analysis tools.

2 Attack Graphs

There are basically two types of attack graphs. In the first type, each vertex represents
the entire network state and the arcs represent state transitions caused by an attacker’s
actions. Examples are Sheyner’s scenario graph based on model checking [14], and the
attack graph in Swiler and Phillips’ work [15]. This type of attack graph is sometimes

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 13

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

called astate enumeration attack graph [9]. In the second type of attack graph, a vertex
does not represent the entire state of a system but rather a system condition in some form
of logical sentence. The arcs in these graphs represent the causality relations between the
system conditions. We call this type of attack graph adependency attack graph. Examples
are the graph structure used by Ammannet al. [3], theexploit dependency graphs defined
by Noelet al. [5, 9], the MulVAL logical attack graph by Ouet al. [6], and themultiple-
prerequisite graphs by Ingolset al. [4].

The key difference between the two types of attack graphs lies in the semantics of their
vertices. While each vertex in a state enumeration attack graph encodes all the conditions
in the network, a vertex in a dependency attack graph encodes a single attack asset of the
network. A paths1 → s2 → s3 in a state enumeration attack graph means that the system’s
state can be transitioned froms1 to s2 and then tos3 by an attacker. But the condition
that enables the transitions2 → s3 may have already become true in a previous state, say
s1. The reason the attacker can get to states3 is encoded in some state variables ins2, but
the arcs in the graph do not directly show where these conditions were first enabled. In
a dependency attack graph, however, the dependency relations among various assets are
directly represented by the arcs.

For example, Figure2 is a simple dependency attack graph. The verticesp1, ..., p5 are
assets to an attacker ande1, e2 are exploits an attacker can launch to gain privileges. The
arcs from a vertex in a dependency attack graph can form one of two logical relations:
“OR” or “AND”. An “OR” vertex represents conditions which may be enabled by any one
of its out-neighbours. An “AND” vertex represents an exploit in the attack graph requiring
all of the preconditions represented by its out-neighbours to be met. In our figures we use
diamonds to symbolize OR vertices, ellipses to symbolize AND vertices, and boxes for
SINK vertices (vertices with no out-neighbours). The dependency attack graph in Figure2
shows that attackers can gain privilegep5 through one of two ways. They can launch
exploit e1 if all of the conditionsp1, p2 andp3 are true. Or they can launch exploite2 if
conditionsp3 andp4 are true. Each of the conditionsp1, ..., p4 could be some other privilege
the attackers need to gain first, or some configuration information such as the existence of
a software vulnerability on a host.

In this paper we have chosen to use dependency attack graphs. Our goal is to compute a
numeric value representing the importance of each attack asset to an attacker and as such
the semantics of dependency attack graphs are better suited for this purpose. Intuitively, the
more a vertex is depended upon, the more important it is to an attacker. This is analogous
to PageRank’s use in the World Wide Web where the more the web depends upon a page
(evidenced by links to it) the more important the page is.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 14 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

p5

e1 e2

p1 p2 p3 p4

Figure 2: Vertices and arcs in a dependency attack graph

3 AssetRank for Attack Graphs

Internet web pages are represented in a directed graph sometimes called aweb graph. The
vertices of the graph are web pages and the arcs are URL links from one page to another.
Google’s PageRank algorithm [12] computes a page’s rank, not based on its content, but
on the link structures of the web graph. Pages that are pointed to by many pages or by a
few important pages have higher ranks than pages that are pointed to by a few unimportant
pages. In this paper, we introduce AssetRank, a generalization of the PageRank algorithm,
which can handle the semantics of vertices and arcs of dependency attack graphs. Our first
contribution allows AssetRank to treat the AND and OR vertices in a dependency attack
graph correctly based on their logical meanings, whereas PageRank is only applied to OR
vertex graphs. The second contribution is a generalization of PageRank’s single system-
wide damping factor to a per-vertex damping factor. This generalization allows AssetRank
to accurately model the various likelihoods of an attacker’s ability to obtain privileges
through means not captured in the graph (out-of-band attacks). The third contribution is
leveraging publicly available vulnerability information (e.g. CVSS) through parameters in
AssetRank so that the importance of security problems is computed with respect to vulner-
ability attributes such as attack complexity and exploit availability. The fourth contribution
is that our generalized ranking algorithm allows network defenders to obtain personalized
AssetRanks to reflect the importance of attack assets with respect to the protection of spe-
cific critical network assets. The fifth contribution is an interpretation of the semantics of
AssetRank values in the context of attack graphs.

The AssetRank algorithm presented here could be applied to any graph whose arcs repre-
sent some type of dependency relation between vertices. In fact, web graphs are a special
case of dependency graphs since a web page’s functionality in part depends on the pages it
links to.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 15

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

A dependency attack graphG is represented asG = (V, A, f, g, h) whereV is a set of ver-
tices;A is a set of arcs represented as(u, v), meaning that vertexu depends on vertexv; f

is a mapping of positive weights to vertices;g is a mapping of non-negative weights to arcs;
andh is a mapping of vertices to their type (AND, OR, or SINK). Theout-neighbourhood
of a vertexv is defined asN+(v) = {w ∈ V : (v, w) ∈ A}, andin-neighbourhood of v

is defined asN−(v) = {u ∈ V : (u, v) ∈ A}. The cardinality of a setX is denoted|X|
and its L1-norm is denoted||X||1. Without loss of generality, we require the vector of all
vertex weightsf(V) to sum to 1.

AssetRank is computed by solving for the principal eigenvectorX in the following equa-
tion.

λX = (D∆ + γPeT)X (1)

Whereλ is the principal eigenvalue,X is the vector of AssetRanks (scaled to sum to 1),
D is the transpose of the square adjacency matrix of a dependency attack graphG (an
AND/OR directed graph),∆ is a diagonal matrix of vertex-specific arc-weight damping
factors where each value is in the range[0, 1], γ ∈ (0, 1] is the vertex-weight damping
factor, P = f(V) is a personalization vector composed of the vertices’ personalization
values (that is, the vertex weights), ande is the all-ones vector.

Equation (1) reduces to the original PageRank ifλ = 1, ∆ = δI (whereI is the identity
matrix andδ is PageRank’s damping factor),γ = 1 − δ, and all vertices are required to be
OR vertices.

3.1 AND Vertices

Dependency attack graphs contain both AND and OR vertices. An OR vertex can be sat-
isfied by any of its out-neighbours, whereas an AND vertex depends onall of its out-
neighbours. For example, the simple dependency attack graph in Figure3(a) shows that
attackers attaining the goalp1 depend upon their ability to obtain both privilegesp2 andp3.
p2 is an AND vertex3 and it requires the two vulnerabilitiesvul1 andvul2. p3 is an OR
vertex and it requires only one of eithervul3 or vul4. In this example we assume all the
arcs have the same weight.

Since any of an OR vertex’s out-neighbours can enable it, the importance of each out-
neighbour decreases as the number of out-neighbours increases since the vertex can be
satisfied by any one of them. This reduced dependency is not true of AND vertices. Since
all the out-neighbours of an AND vertex are necessary to enable it, it is intuitively incorrect
to lessen the amount of value flowed to each out-neighbour as their numbers grow.

3. In our figures, AND vertices are represented by ovals, OR vertices are represented by diamonds, and
SINK vertices are represented by rectangles.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 16 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

p1

p2 p3

vul1 vul2 vul3 vul4

(a)

Vertex AssetRank
p1 0.1722
p2 0.1680
p3 0.1680
vul1 0.1639
vul2 0.1639
vul3 0.0820
vul4 0.0820

(b)

Figure 3: AssetRank computation for an AND/OR graph

Rather than splitting the value of an AND vertex wereplicate it to its out-neighbours. Each
out-neighbour of an AND vertex receives the full value from the vertex multiplied by the
vertex’s damping factor. That is, for every outgoing edge(u, v) from an AND vertexu,
the corresponding matrix entryDvu

4 is 1. We now have the following restrictions on the
graph’s arc weights:

∑

w∈N+(v)

g(v, w) =

|N+(v)|, if h(v) = AND

1, if h(v) = OR

0, if h(v) = SINK

(2)

A unique principal eigenvectorX in Equation (1) exists (up to scalar multiplication) and
follows from Perron’s theorem (see, for example, [16]), and the fact thatD∆ + γPeT

is positive. Thus, convergence using the power method is guaranteed. The computation
using the power method with the terms optimized to take advantage of the sparsity ofD∆
follows.

Step 1:X ′
t
= D∆Xt−1 + γP ; Step 2:Xt =

1

||X ′
t||1

X ′
t

(3)

Figure3(b)displays the result of applying the above algorithm to the graph in Figure3(a).
For this example, we use a single constant damping factor of∆ = 0.85I andP is such that
only the goal vertexp1 has a non-zero personalization value.

AssetRank gives5 the expected relative importance for the four vulnerabilities:vul1 and

4. As a shorthand notation we useu andv in Dvu to represent the column and row indices corresponding
to the respective vertices.

5. All of the experiments in this paper required a computation time of less than one second on a typical
desktop PC and converged in 78 iterations or less. The complexity of the power method depends upon
the complexity of matrix multiplication and the number of iterations required. The complexity of naive
matrix multiplication isO(n3). Speed improvements for PageRank computation can also speed up AssetRank
computation as long as they do not require the principal eigenvalue to be 1.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 17

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

vul2 are twice as important asvul3 andvul4 since patching one ofvul1 or vul2 has an
equivalent effect in denying the goalp1 as patching bothvul3 andvul4.

3.2 Vertex-Specific Damping

In the case of PageRank applied to web pages, the system-wide damping factorδ gives the
probability that surfers will stop surfing [17]. They could stop surfing for any number of
reasons including having found the desired information or encountering a poor quality web
page. The reality is that not all web pages have an equal likelihood to be the end point of
a user’s surfing. On some web pages almost all of the surfers will continue surfing (for
example, search results) while on other pages, almost all of the surfers will stop surfing
(for example, a local weather page).

An analogous situation exists for attack graphs. An “attack planner” will more likely stop
traversing the attack graph if the vertex represents a privilege that can be easily obtained
“out-of-band”. For example, attackers requiring the ability to execute code on a user desk-
top could use out-of-band methods such as social engineering rather than purely technical
exploits.6

In general, the damping factor measures the likelihood that an attack planner will continue
traversing the graph. We improve the accuracy of the ranks by not assuming that the plan-
ners are equally likely to stop traversing the graph regardless of the vertex they are visiting.
Rather than using a single damping factor, we introduce vertex-specific damping factorsδv

and assemble them into the diagonal damping matrix∆ = diag(δ1, δ2, . . . , δ|V |).

3.3 Personalization Vector

It is insufficient to consider only the dependency relations and damping factors in deter-
mining a vertex’s value. Network defenders place a higher priority on defending critical
servers than non-critical PCs. Similarly, some assets are more valuable than others to at-
tackers. We use vertex weights as apersonalization value to represent a vertex’s inherent
value to network attackers or defenders. Network defenders may identify the assets they
desire to deny the attacker by assigning them a personalization value that reflects their im-
portance to the defender’s operations. The remaining attack assets are assigned a value of 0
which then causes the computed AssetRank values to reflect their importance only in so far
as they are likely to be used by an attacker to obtain the attack assets identified as critical.

6. The attack graphs we use in this paper include only technical exploits.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 18 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

4 Parameter Assignment

Attack graph dependencies and attack asset attribute information (such as CVSS metrics
obtained from the NVD database) supply the three key componentsD, ∆, andP of the
AssetRank matrixA = D∆+γPeT . In this section we explain how to obtain and set these
values. In Section5 we will demonstrate their effect on the asset ranks. The parameter
γ sets the influence of the personalization vector which has the effect of opting to favour
attack assets closer to the goal versus favouring attack assets closer to the attacker.

4.1 Dependency Matrix (D)

To model attacker preferences, we assign asuccess likelihood s(v) to every vertex. The
success likelihood has a slightly different meaning for the three types of vertices: AND,
OR, and SINK.

The SINK vertices represent the ground facts that MulVAL uses when deriving attack paths.
The ground facts include the existence of vulnerable software, network routes and the
services running on each machine. Every ground fact is assigned a success likelihood.
To simplify the demonstration in this paper we assign the success likelihood 1 to all non-
vulnerability SINK vertices. That is, we assume that if a service exists, it is always up, and
that network paths are stable.7

CVSS is a standard for specifying vulnerability attributes. Two attributes that are particu-
larly useful in prioritizing attack assets are the base metric of Access Complexity (AC) and
the temporal metric of Exploitability (E). For the AC metric, vulnerabilities are assigned
a value of high, medium, or low, to indicate the existence of specialized access conditions
such as a race condition or configuration setting. When considering the E metric, vulnera-
bilities are assigned a value of unproven, proof-of-concept, functional, or high, to indicate
the current state of exploit maturity. If one attack path in the attack graph depends upon
an unproven vulnerability and another attack path depends upon a vulnerability with func-
tional exploit code, the attack assets in the latter attack path (all vulnerabilities and network
routes) are more likely to be involved in an attack and so they are more valuable to attack-
ers. Consequently, they also deserve a higher degree of attention by network defenders.
In our experiments we assign a success likelihoods(v) to each vulnerability vertexv ac-
cording to Table1. The success likelihood indicates the probability that an attacker will
successfully exploit the vulnerability.

MulVAL attack graphs also containrule vertices. These are AND vertices that specify
how a privilege may be obtained. The parameters(v) for AND vertices models the pref-

7. Users could assume mobile devices are present intermittently and hence assign a success likelihood
to network routes for mobile devices that represent the likelihood that the device will be connected to the
network.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 19

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Table 1: CVSS Exploitability Metrics and Success Likelihoods

CVSS Exploitability Metric Success Likelihoods(v)
Unproven 1%
Proof-Of-Concept 40%
Functional 80%
High 99%

erence of attackers for different attack strategies. For example, two of the rules describe
how network access may be obtained. In the first case, direct network access to a host is
obtained if an attacker has a machine and a network route exists from that machine to the
intended host. In the second case, multi-hop network access to a host is obtained if an
attacker can execute code of his choosing on a victim machine and a network route exists
from that machine to the intended host. Since an attack is complicated by multi-hop ac-
cess, we assume that the attacker prefers direct routes so we assign a preference score of
1.0 to the direct route and 0.5 to the indirect route. In a similar manner, other rules may
be assigned a preference score indicating attackers’ preferences. These rule preferences
would be set by experts to model different types of attackers (for example, script kiddies
or black-hat criminals).

Finally, MulVAL attack graphs contain derived attack assets. These are OR vertices in an
attack graph and they represent choices that an attacker has in order to obtain the attack as-
set. For example, MulVAL-generated attack graphs includeexecCode(machine,account)
vertices stating that an attacker could obtain the ability to execute arbitrary code onmachine
at the privilege ofaccount. However, theexecCode attack asset might be obtained through
a choice of multiple routes in the attack graph. These multiple routes are represented by
multiple outgoing arcs from theexecCode vertex, an OR vertex. Not all of these routes are
equally difficult to obtain and we make the assumption that attackers prefer easier methods
of obtaining the derived attack asset. For example, attackers would favour routes that may
be exploited with reliable tools.8

Attack paths will contain several ground facts (SINK vertices), rules (AND vertices), and
derived attack assets (OR vertices). Weights of the out-going arcs are computed by perco-
lating the success likelihoods throughout the graph by settingg(u, v) = m(v) where

m(v) =

s(v), if h(v) = SINK

s(v)
∏

w∈N+(v)

m(w), if h(v) = AND

max
w∈N+(v)

m(w), if h(v) = OR

(4)

8. Users of our system can make their own assumptions about attacker preferences and could, for exam-
ple, assume that attackers will favour routes that utilize theoretical vulnerabilities that do not have published
exploit code.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 20 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

In words, the arc weight from vertexu to v is the success likelihood ofv if v is a SINK
vertex, the attacker’s preference for the attack type multiplied by the product of all of the
paths required forv if v is an AND vertex, and the easiest path fromv if v is an OR vertex.
Finally, the arc weights are normalized according to Equation (2).

4.2 Damping Matrix (∆)

In Section3.2 we introduced vertex-specific damping factors. This extension allows the
modeling of out-of-band attacks for derived attack assets (OR vertices). For example, the
ability to execute code on a victim’s machine can be gained by obtaining the victim’s login
credentials through social engineering — a non-technical attack that is not captured in the
attack graph. If attackers gain the attack assetv by means outside the graph, they will not
require the dependencies ofv captured in the attack graph so those dependencies are less
valuable to the attacker and so deserve less attention from network defenders.

For MulVAL attack graphs, specifying a damping factor is only sensible for OR vertices
(derived attack assets). The damping factor has no effect on SINK vertices because they
have no out-going arcs. Also, AND vertices are fundamentally required in the attack graph
and cannot be obtained out-of-band so the damping factor for AND vertices is set to 1 (no
damping).

The success likelihood of obtaining a derived asset out-of-band for an OR vertexv is de-
noteds(v). An example of an out-of-band attack is an attacker obtaining a user’s login
credentials through social engineering. The success likelihood depends upon the level of
awareness and training of the user. A network defender can specify the success likelihood
based upon the type of user account. For example, root users could be assigned a low like-
lihood score such as 20% while standard users could be assigned a score of 80%. Security
experts will be relied upon to provide metrics for out-of-band attacks.

The degree to which attackers will use out-of-band attacks depends upon both the projected
success of the out-of-band attack and the difficulty of obtaining the attack asset by using
the means specified in the attack graph. If the attack asset may be obtained with certainty
using the attack graph then the attacker will use those means. Also, if out-of-band attacks
are impossible or are certain to fail, the attacker will not exit the graph to attempt the
out-of-band means but will use the means in the attack graph to obtain the privilege. The
following equation captures these requirements. For an OR vertexv with an out-of-band
success likelihoods(v), the damping factorδv is given by

δv = (1 − s(v)) + s(v)m(v) . (5)

The damping matrix is a diagonal matrix constructed from the vertex-specific damping
factors by setting∆ = diag(δ1, δ2, . . . , δ|V |).

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 21

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

4.3 Personalization Vector (P)

The personalization vectorP represents the network defender’s desire to deny an attack
asset to attackers. If a defender is only interested in denying a single goal vertexg then its
personalization valuef(g) is set to 1 and all other vertices are set to 0.9 If the defender
desires to deny several vertices (for example, theexecCode privilege on all servers) then
the values will be set for the vertices in a manner that represents the defenders (conversely,
the attackers) interest in those vertices. It is expected that the defender will set the person-
alization values based upon the organization’s operational priorities.

5 Experiments

In this section we present several experiments we conducted to study 1) AssetRank’s ef-
ficacy in giving results consistent with the importance of an attack asset to a potential at-
tacker; and 2) how the AssetRank metric may be used to better understand security threats
conveyed in a dependency attack graph, as well as in choosing appropriate mitigation mea-
sures.

In our experiments, we use the MulVAL attack-graph tool suite to compute a dependency
attack graph based upon a network description and a user query. For example, a user may
ask if attackers can execute code of their choosing on any server. The attack graph is
exported to a custom Python module. The Python module normalizes the input data, com-
putes the AssetRank values, and visualizes the attack graph using the graph visualization
software Graphviz [18].

5.1 Experiment 1

The first experiment demonstrates the effect of arc weights and vertex-specific damping
factors on a small network. Figure4 shows the network for experiments 1a and 1b. The
attacker has access to both PC1 and PC2. User1 is on PC1 which has vulnerability Vul1
and User2 is on PC2 which has vulnerability Vul2. PC1 and PC2 have access to the goal
machine but not to each other.

In experiment 1a we assume that Vul1 has functional exploit tools available and Vul2 has
only proof-of-concept code available. Hence, we assign success likelihood metrics of 0.8
and 0.4, respectively. A uniform damping factor of 0.99 is applied to all vertices. We
expect that Vul1 will have a higher rank metric than Vul2 since the attacker is more likely
to prefer it. Figure5 shows the attack graph coloured according to the assets’ AssetRank

9. Technically, the non-goal vertices are set to an arbitrarily smallε > 0 and the goal is set to1−(|V |−1)ε.
This ensures that the AssetRank matrixA = D∆+γPeT is positive, a condition that guarantees the existence
of a unique positive eigenvector according to Perron’s theorem.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 22 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

����� �����	
� �
����� �����	
� �

���	
���������� ����������
Figure 4: Scenario for experiments 1a and 1b

values and Table2 shows the rank metrics for the two vulnerabilities Vul1 and Vul2. The
vertex colours range from blue to red with blue indicating vertices with relatively lower
ranks and red indicating vertices with higher ranks. Our algorithm computes a value of
0.0579 for Vul1 and a value of 0.0289 for Vul2 which is consistent with the higher value
that Vul1 has to the attacker.

Table 2: AssetRanks for Experiment 1a

Attack Asset Rank
vulExists(pc1,vul1,service,. . .)0.0579
vulExists(pc2,vul2,service,. . .)0.0289

In experiment 1b we assign both Vul1 and Vul2 a success likelihood of 1.0. However, we
assume that it is 80% likely that PC1 will be compromised by ways not shown by the attack
graph (for example, obtaining User1’s log-in credentials through social-engineering), and
PC2 is 40% likely to be compromised in such ways. Perhaps User2 has received more
training and so is more security-vigilant than User1). We expect that Vul1 will be ranked
lower than Vul2 since the attacker has a lower dependence upon it. AppendixB shows the
attack graph coloured according to the assets’ rank values and Table3 shows a selected
portion of the vertices and their scores. As we can see, Vul2 has a score of 0.0414 and
Vul1 has a score of 0.0310. This ranking is intuitively correct since attackers have a greater
chance of obtaining PC1 without exploiting its vulnerability, so Vul1 is less important to
them.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 23

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

1: execCode(goal,serviceaccount)
Rank: 0.01373

Damp: 0.99 Likelihood: 1.0

2: RULE 2 (remote exploit of a server program)
Rank: 0.01867

Damp: 0.99 Likelihood: 1.0

0.8

3: netAccess(goal,tcp,80)
Rank: 0.02539

Damp: 0.99 Likelihood: 1.0

1.0

24: networkServiceInfo(goal,service,tcp,80,serviceaccount)
Rank: 0.02539

Damp: 0.99 Likelihood: 1.0

1.0

25: vulExists(goal,vul3,service,remoteExploit,privEscalation)
Rank: 0.02539

Damp: 0.99 Likelihood: 1.0

1.0

4: RULE 5 (multi-hop access)
Rank: 0.02302

Damp: 0.99 Likelihood: 0.5

0.8

14: RULE 5 (multi-hop access)
Rank: 0.01151

Damp: 0.99 Likelihood: 0.5

0.4

5: hacl(pc1,goal,tcp,80)
Rank: 0.03129

Damp: 0.99 Likelihood: 1.0

1.0

6: execCode(pc1,serviceaccount)
Rank: 0.03129

Damp: 0.99 Likelihood: 1.0

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.04255

Damp: 0.99 Likelihood: 1.0

0.8

8: netAccess(pc1,tcp,80)
Rank: 0.05785

Damp: 0.99 Likelihood: 1.0

1.0

12: networkServiceInfo(pc1,service,tcp,80,serviceaccount)
Rank: 0.05785

Damp: 0.99 Likelihood: 1.0

1.0

13: vulExists(pc1,vul1,service,remoteExploit,privEscalation)
Rank: 0.05785

Damp: 0.99 Likelihood: 0.8

1.0

9: RULE 6 (direct network access)
Rank: 0.07866

Damp: 0.99 Likelihood: 1.0

1.0

10: hacl(a,pc1,tcp,80)
Rank: 0.10695

Damp: 0.99 Likelihood: 1.0

1.0

21: attackerLocated(a)
Rank: 0.16043

Damp: 0.99 Likelihood: 1.0

1.0

15: hacl(pc2,goal,tcp,80)
Rank: 0.01565

Damp: 0.99 Likelihood: 1.0

1.0

16: execCode(pc2,serviceaccount)
Rank: 0.01565

Damp: 0.99 Likelihood: 1.0

1.0

17: RULE 2 (remote exploit of a server program)
Rank: 0.02127

Damp: 0.99 Likelihood: 1.0

0.4

18: netAccess(pc2,tcp,80)
Rank: 0.02893

Damp: 0.99 Likelihood: 1.0

1.0

22: networkServiceInfo(pc2,service,tcp,80,serviceaccount)
Rank: 0.02893

Damp: 0.99 Likelihood: 1.0

1.0

23: vulExists(pc2,vul2,service,remoteExploit,privEscalation)
Rank: 0.02893

Damp: 0.99 Likelihood: 0.4

1.0

19: RULE 6 (direct network access)
Rank: 0.03933

Damp: 0.99 Likelihood: 1.0

1.0

1.0

20: hacl(a,pc2,tcp,80)
Rank: 0.05348

Damp: 0.99 Likelihood: 1.0

1.0

Figure 5: Attack graph for the Experiment 1a scenario

Table 3: AssetRanks for Experiment 1b

Attack Asset Rank
vulExists(pc1,vul1,service,. . .)0.0310
vulExists(pc2,vul2,service,. . .)0.0414

5.2 Experiment 2

We now demonstrate the results of applying AssetRank to the attack graph for the example
network in Figure1. In the first scenario, we assume all the vulnerabilities have the same
exploitability difficulty level, represented by identical success likelihood metrics.

A portion of the resulting ranking is shown in Table4, and the complete attack graph with
coloured vertex ranking can be found in AppendixC. 10 The ranking is consistent with the
intuitive importance of the various attacker assets. Namely, vulnerabilities on C and D are
more important than the one on B, since these two machines are stepping stones into the
right subnet. Likewise, the attacker’s reachability to C and D is ranked higher than that to
B.

10. In MulVAL, a tuplevulExists(Host, VulID, Account, AccessVector, Consequence) means
“machine Host has the vulnerability VulID in software running as Account that is exploitable via AccessVec-
tor with the result Consequence.” A tuplehacl(H1, H2, Protocol, Port) means “machine H1 can reach
machine H2 through Protocol and Port.”

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 24 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Table 4: AssetRanks for Experiment 2a

Attack Asset Rank
vulExists(c,vulid2, . . .) 0.0323
vulExists(d,vulid1, . . .) 0.0323
vulExists(e,vulid4, . . .) 0.0274
vulExists(f,vulid5, . . .) 0.0219
vulExists(b,vulid1, . . .) 0.0174
hacl(e,f,tcp,80) 0.0267
hacl(a,d,tcp,80) 0.0240
hacl(a,c,tcp,80) 0.0240
hacl(d,e,tcp,80) 0.0167
hacl(c,e,tcp,80) 0.0167
hacl(a,b,tcp,80) 0.0129

Now suppose the vulnerability vulid2 on machine C is very difficult to exploit, and the
other vulnerabilities are easy to exploit. We therefore assign the metric0.2 to vulid2 and
the other vulnerabilities a metric of0.8. The result of the new configuration is given in
Table5 and the full coloured attack graph is in AppendixD.

Table 5: AssetRanks for Experiment 2b

Attack Asset Rank
vulExists(d,vulid1, . . .) 0.0453
vulExists(e,vulid4, . . .) 0.0303
vulExists(f,vulid5, . . .) 0.0229
vulExists(b,vulid1, . . .) 0.0188
vulExists(c,vulid2, . . .) 0.0127
hacl(a,d,tcp,80) 0.0406
hacl(d,e,tcp,80) 0.0304
hacl(e,f,tcp,80) 0.0287
hacl(a,b,tcp,80) 0.0168
hacl(a,c,tcp,80) 0.0097
hacl(c,e,tcp,80) 0.0076

What is remarkable in the new ranking is that the vulnerability on machine C is ranked
much lower than before, since it is hard to exploit. Now machine D becomes much more
valuable to the attacker since it is likely to be the only feasible stepping stone into the
right subnet, which is manifested by the boosted values on both the vulnerabilities and
reachability relations involving D. Note that the vulnerability on machine B is the same as
the one on machine D. But since B cannot directly help the attacker penetrate deeper into
the network, its vulnerability’s rank is lower than that of D.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 25

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Enterprise Network

Control
Network
(EMS)

������������� !"#!"$
%&!"����' ������ (���)�$��"���

*!+ !"#!"
,-. !"#!" ���"�/ !"#!"

0$!"*�"1$������$2�3! !"#!"Internet

DMZ
CORP Internal

Figure 6: A realistic network scenario for Experiment 3

5.3 Experiment 3

To study how AssetRank works in a more complicated realistic setting, we tested it on a
network scenario adapted from a real control-system network, shown in Figure6. In this
network, an enterprise network is protected by a firewall from the Internet. Only machines
in the DMZ subnet can be directly accessed from the Internet zone. The machines in the
CORP internal subnet can freely access the Internet. Only one machine in the network,
the Citrix server, can access the control-system subnet (the Energy Management System,
or EMS) which is protected by another firewall, and it may only access the Data Historian.
Assuming the attacker is on the Internet and wants to obtain privileges on the Communica-
tions Servers in the EMS subnet, there are two obvious entry ways for him: the web server
and the VPN server, both of which can be directly accessed from the Internet.

We introduced hypothetical vulnerabilities into this scenario and assigned metrics for them
based on our understanding of typical security problems in this type of network.11 We
applied AssetRank on this example and the resulting coloured attack graphs can be found
in AppendixE. The ranking identifies the two most critical vulnerabilities in the network.
One is a remote buffer overflow vulnerability on the web server, which would allow a re-

11. In real applications, this information will automatically be furnished by data collection agents installed
on the machines and the CVSS metrics provided by the NVD.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 26 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

mote attacker to gain code execution privilege in the DMZ subnet. The other is a browser
vulnerability on the user workstation. Since outbound traffic from the CORP Internal zone
is not restricted, an unsuspecting user may browse to a malicious website and compromise
his machine. This compromise will yield privileges on the internal network to the attacker.
There are many other vulnerabilities in the network and there are other ways to penetrate
into the system (for example, through the VPN server). But the two critical problems iden-
tified by the AssetRank algorithm are consistent with a human’s conclusion after spending
an extensive amount of time studying the information revealed by the complicated 129
vertex attack graph with 185 dependencies.

6 Interpretation of AssetRank

In this section we describe a stochastic interpretation for the numeric value computed by
AssetRank on dependency attack graphs. Stochastic interpretation has been used to give the
original PageRank a semantic meaning in a random walk model [12, 17]. A random walker
surfs the web graph in the following manner. At each time interval, with probabilityδ it
will follow one of the links in the current page with equal probability; with probability1−δ

it will “get bored” and jump to one of the pages in the web graph with equal probability.
Under this interpretation, the equilibrium point of sequence (3) will be the probability a
random surfer is on a page. This random-walk model cannot be applied to dependency
attack graphs, primarily because it does not handle AND and OR vertices differently. In
this section we give an interpretation of AssetRank that provides meaningful semantics in
the context of dependency attack graphs.

Our interpretation is inspired by the model used by Bianchiniet al. [17]. Imagine a poten-
tial attacker has the attack graph12 and is planning how to attack the system. He does so
by dispatching an army of “attack planning agents” whose task is to learn how to obtain
the privileges represented by the vertices. Every agent behaves in the following manner:
at each moment an agent considers only one vertex in the attack graph. We usevi(t) to
denote the vertex agenti is contemplating at timet. Let v = vi(t). If v is a sink vertex,
agenti has finished his job and stops working. Otherwise he will, with probabilityδv, plan
how to satisfy the requirements forv based on the attack graph; with probability1 − δv,
he stops traversing the graph and decides to obtain the privilegev through other means
not encoded in the attack graph (for example, through backdoors already installed in the
system or social engineering). In the latter case, the agent has also finished his planning
and stops working.

With probability δv, the agent uses the attack graph and follows the out-going arcs from
v to satisfy its preconditions. Two cases need to be considered. Ifv is an OR vertex, the

12. In reality an attack graph should never be leaked to an attacker; however, in evaluating security we
assume that the attacker has the attack graph since security through obscurity is not true security.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 27

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

agent will choose one of its out-neighboursw with the following probability.

Pr[vi(t + 1) = w | vi(t) = v] = g(v, w) (6)

If v is an AND vertex, the agent must plan how to satisfyall the out-neighbours ofv. Thus
he must move along all the out-going arcs simultaneously. We model this by allowing the
agent to replicate itself13 with each replica moving to one of the out-neighbours indepen-
dently. More precisely, at stept + 1 agenti will becomer = |N+(v)| agentsi1, ..., ir,
each of which is assigned one of the vertices inN+(v) so that every element inN+(v) is
covered.

The potential attacker has an unlimited number of such agents at his disposal. Every time he
dispatches an agent to a vertex in the attack graph, the agent will try to find a way to attack
the system such that the goal represented by the starting vertex can be achieved. When the
agent (and all his clones) finishes the job, an attack plan has been made. Each time he may
find a different attack path due to the probabilistic choices he makes along the way. At each
time interval, the potential attacker will dispatch new agents with probabilityγ and the new
agents will start from one of the graph vertices with the probability distribution specified
by the personalization vectorP . The number of new agents isγ times the number of active
agents currently in the system.

Let the vectorXt = [X1
t
, ..., X

|V |
t]T whereXv

t
is a random variable representing the number

of active agents planning an attack for vertexv at timet. E(Xv

t
) is the expected value of the

random variableXv

t
. We useE(Xt) to represent[E(X1

t
), ..., E(X

|V |
t)]T . Let E(X0) = P

which corresponds to the attacker dispatching the first agent according to the probability
distribution given byP . The following equation then holds fort > 0.

E(Xt) = D∆E(Xt−1) + γ||E(Xt−1)||1P (7)

After normalization, this is precisely the sequence specified by (3). The normalized value
of E(Xt) converges to a unique solution ast → ∞ and the AssetRank value computed will
represent the portion of active attack planning agents on each vertex in the attack graph.

Under this attack-planning-agents interpretation, a higher AssetRank value for a vertex
indicates there will be a larger portion of planning agents discovering how to obtain the
asset represented by the vertex. Thus, our AssetRank metric directly implies the importance
of the privilege or vulnerability to a potential attacker. The arc weightg(v, w) indicates the
desirability of the attack step(v, w) with respect to achieving the capabilityv, since a
higherg(v, w) means a planning agent will be more likely to choosew asv’s enabler. A
vertex’s personalization value represents the desirability of the privilege to an attacker. A
higher personalization value indicates the vertex is more important to the attacker and so

13. Analogous to the UNIXfork() command.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 28 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

he is more likely to dispatch a planning agent to determine how to achieve the goal. A
lower δv indicates the attacker is more likely to gain privileges by out-of-band means and
thus will not follow the attack graph.γ indicates the rate at which the attacker dispatches
new agents.

7 Discussion

A very useful aspect of AssetRank in the context of attack graphs is to assist in prioritizing
further analysis and understanding of the threats. We have used the AssetRank values to
colour the attack graph vertices so that a user’s attention is immediately focussed on the
most critical portion. The lowest ranked vertices are coloured blue and the highest ranked
vertices are coloured red. This colouring is intended to be analogous to water faucets where
the hot (and dangerous) tap is coloured red and the cold tap is coloured blue. The values
could also be use to incrementally show the vertices in an attack graph, with the highest
ranked vertices shown first followed by the lower-ranked ones. Network defenders can
work through the ranked attack graph addressing the threats in order of their criticality.
Since the full attack graph is often too cumbersome for a user to understand, this type of
incremental analysis should be useful in practice.

As discussed in Section6, the asset ranks correspond to the expected percentage of attack
planning agents working on each vertex. The vertices in the attack graph represent specific
vulnerabilities on specific machines. For example, the verticesvulExists(pc1,vul1),
vulExists(pc1,vul2), vulExists(pc1,vul3), andvulExists(pc2,vul1) could ap-
pear in an AssetRanked attack graph. Further analysis can be conducted on the rank metrics
to further understand how mitigation measures should be prioritized. In this case, the val-
ues for all of the vertices connected topc1 can be summed to produce a total that indicates
the number of attack planning agents that are seeking to compromise that machine. If
a machine is especially vulnerable then the network defenders could decide to remove it
from the network or separate its functionality amongst several new machines in order to
reduce the quantity of software on the single machine. Similarly, the rank metrics for each
specific vulnerability may be summed (for example, sum all of the rank values related to
vul1) to learn which vulnerability overall is the most important to attackers. Since rolling
out patches is not generally performed on a single machine but rather across the entire net-
work, network defenders could prioritize patch roll-out by the sum of the asset ranks for
each vulnerability.

We have shown that arc weights are a flexible instrument that allow the user to take attacker
preferences into account. In our paper we used the weights to favour attacks with mature
exploitation techniques over unproven attacks. Alternatively, the metric can be used to
denote other attack characteristics or a combination of them.

• Stealthiness of an attack — allows the inclusion of IDSs in the model by giving a

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 29

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

penalty for attacks leaving evidence (log entries or system crashes for example) or
detectable attacks over links monitored by an IDS.

• Resources required — gives the ability to penalize resource consuming attacks (for
example, attacks that require password cracking or large bandwidth).

8 Related Work

Mehtaet al. apply the Google PageRank algorithm to state enumeration attack graphs [13].
Aside from the generalizations of PageRank presented in this paper, the key difference from
their work is that AssetRank is applied to dependency attack graphs which have very dif-
ferent semantics from the state enumeration attack graphs generated by a model checker.
First, a vertex in a dependency attack graph describes a privilege attackers use or a vul-
nerability they exploit to accomplish an attack. Hence, ranking a vertex in a dependency
attack graph directly gives a metric for the privilege or vulnerability. Ranking a vertex in
a state enumeration attack graph does not provide this semantics since a vertex represents
the state of the entire system including all configuration settings and attacker privileges.
Second, the source vertices of our attack graphs are the attackers’ goals as opposed to the
source vertex being the network initial state, as is the case in the work of Mehtaet al.
Since our source vertices are the attackers’ goals, value flows from them and the computed
rank of each vertex is in terms of how much attackersneed the attack asset to achieve their
goals. Thus our rank is a direct indicator of the main attack enablers and where security
hardening should be performed. The rank computed in Mehtaet al.’s work represents the
probability a random attacker (similar to the random walker in the PageRank model) is in
a specific state, in particular, a state where he has achieved his goal. But the probability a
random attacker is in the goal state may decrease as the number of attack paths increases
— simply because there are more states to split the distribution. As a result, contrary to
what was proposed in their paper, this rank cannot serve as a metric for the system’s overall
vulnerability.

Recent years have seen a number of efforts that apply numeric security metrics to attack
graphs. For example, Wanget al. studied how to combine individual security metrics
to compute an overall security metric using attack graphs [19]. Dewri et al. proposed
configuration optimization methods that are based on attack graphs, numeric cost functions,
and genetic algorithms [20]. The goal of our work is different. We aim to use standardized
security metrics and a unified algorithmic framework to rank and prioritize the security
problems revealed by an attack graph.

There have been various forms of attack graph analysis proposed in the past. The ranking
scheme described in this paper is complementary to those works and could be used in
combination with existing approaches. One of the factors that has been deemed useful for
attack graphs is finding a minimal set of critical configuration settings that enable potential

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 30 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

attacks since these could serve as a hint on how to eliminate the attacks. Approaches to
find the minimal set have been proposed for both dependency attack graphs [5] and state-
enumeration attack graphs [8, 21]. Business needs usually do not permit the elimination of
all security risks so the AssetRank values could be used alongside minimal-cut algorithms
to selectively eliminate risk. In the experiment in Section5.2, the highest ranked vertices
(compromise/vulnerability on host C and D) happen to be a minimal set that will cut the
attack graph in two parts. AssetRank can incorporate standardized security metrics such as
CVSS, and compute the relative importance of each attack asset based on both the metrics
and the attack graph. A binary result from the minimal-cut algorithm does not provide this
capability, which we believe is important in realistic security management.

It has been recognized that the complexity of attack graphs often prevents them from being
useful in practice and methodologies have been proposed to better visualize them [9, 10,
11, 22]. The ranks computed by our algorithm could be used in combination with the
techniques in those works to help further the visualization process, for example by coloring
the visualization based on the computed ranks.

9 Conclusion

In this paper we proposed the AssetRank algorithm, a generalization of the PageRank algo-
rithm, that can be applied to rank the importance of a vertex in a dependency attack graph.
The model adds the ability to reason on heterogeneous graphs containing both AND and
OR vertices. It also adds the ability to model various types of attackers. We have shown
how to incorporate vulnerability attribute information into the arc weights. Similarly, users
could compute attack asset ranks derived from metrics regarding attack noisiness, attack
path length, or resource utilization. We have also shown how to model the existence of
out-of-band attacks into vertex-specific damping weights. We incorporated personalization
values to allow network defenders to specify the assets they most desire to deny attackers
and thus obtain a personalized attack asset ranking based upon their operational priorities.

The numeric value computed by AssetRank is a direct indicator of how important the attack
asset represented by a vertex is to a potential attacker. The algorithm was empirically
verified through numerous experiments conducted on several example networks. The rank
metric will be valuable to users of attack graphs in better understanding the security risks, in
fusing publicly available attack asset attribute data, in determining appropriate mitigation
measures, and as input to further attack graph analysis tools.

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 31

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 32 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Annex A: Full Attack Graph

execCode(f,serviceaccount)

RULE 2 (22) : remote exploit of a server program

12

networkServiceInfo(f,service,tcp,80,serviceaccount)

1

vulExists(f,vulid,service,remoteExploit,privEscalation)

1

netAccess(f,tcp,80)

11

RULE 5 (52) : multi-hop access

10

hacl(e,f,tcp,80)

1

execCode(e,serviceaccount)

9

RULE 2 (17) : remote exploit of a server program

8

networkServiceInfo(e,service,tcp,80,serviceaccount)

1

vulExists(e,vulid,service,remoteExploit,privEscalation)

1

netAccess(e,tcp,80)

7

RULE 5 (44) : multi-hop access

6

RULE 5 (46) : multi-hop access

6

hacl(c,e,tcp,80)

1

execCode(c,serviceaccount)

5

RULE 2 (7) : remote exploit of a server program

4

networkServiceInfo(c,service,tcp,80,serviceaccount)

1

vulExists(c,vulid,service,remoteExploit,privEscalation)

1

netAccess(c,tcp,80)

3

RULE 5 (32) : multi-hop access

6

RULE 5 (36) : multi-hop access

6

RULE 6 (59) : direct network access

2

hacl(b,c,tcp,80)

1

execCode(b,serviceaccount)

5

RULE 2 (2) : remote exploit of a server program

4

netAccess(b,tcp,80)

3

networkServiceInfo(b,service,tcp,80,serviceaccount)

1

vulExists(b,vulid,service,remoteExploit,privEscalation)

1

RULE 5 (28) : multi-hop access

6

RULE 5 (30) : multi-hop access

6

RULE 6 (56) : direct network access

2

5

hacl(c,b,tcp,80)

1

hacl(d,b,tcp,80)

1

execCode(d,serviceaccount)

5

RULE 2 (12) : remote exploit of a server program

4

netAccess(d,tcp,80)

3

networkServiceInfo(d,service,tcp,80,serviceaccount)

1

vulExists(d,vulid,service,remoteExploit,privEscalation)

1

RULE 5 (38) : multi-hop access

6

RULE 5 (40) : multi-hop access

6

RULE 6 (61) : direct network access

2

5

hacl(b,d,tcp,80)

1

5

hacl(c,d,tcp,80)

1

hacl(a,d,tcp,80)

1

attackerLocated(a)

1

1

hacl(a,b,tcp,80)

1

5

hacl(d,c,tcp,80)

1

1

hacl(a,c,tcp,80)

1

hacl(d,e,tcp,80)

5

1

Figure A.1: Attack graph for the network in Figure1

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 33

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 34 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Annex B: Experiment 1b Attack Graph
1:

 e
xe

cC
od

e(
go

al
,s

er
vi

ce
ac

co
un

t)
R

an
k:

 0
.0

17
02

D
am

p:
 0

.5
 L

ik
el

ih
oo

d:
 1

.0

2:
 R

U
LE

 2
 (

re
m

ot
e

ex
pl

oi
t o

f a
 s

er
ve

r
pr

og
ra

m
)

R
an

k:
 0

.0
14

48
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

0.
5

3:
 n

et
A

cc
es

s(
go

al
,tc

p,
80

)
R

an
k:

 0
.0

24
65

D
am

p:
 0

.5
 L

ik
el

ih
oo

d:
 1

.0

1.
0

24
: n

et
w

or
kS

er
vi

ce
In

fo
(g

oa
l,s

er
vi

ce
,tc

p,
80

,s
er

vi
ce

ac
co

un
t)

R
an

k:
 0

.0
24

65
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

25
: v

ul
E

xi
st

s(
go

al
,v

ul
3,

se
rv

ic
e,

re
m

ot
eE

xp
lo

it,
pr

iv
E

sc
al

at
io

n)
R

an
k:

 0
.0

24
65

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 1

.0

1.
0

4:
 R

U
LE

 5
 (

m
ul

ti-
ho

p
ac

ce
ss

)
R

an
k:

 0
.0

10
49

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 0

.5

0.
5

14
: R

U
LE

 5
 (

m
ul

ti-
ho

p
ac

ce
ss

)
R

an
k:

 0
.0

10
49

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 0

.5

0.
5

5:
 h

ac
l(p

c1
,g

oa
l,t

cp
,8

0)
R

an
k:

 0
.0

17
85

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 1

.0

1.
0 6:

 e
xe

cC
od

e(
pc

1,
se

rv
ic

ea
cc

ou
nt

)
R

an
k:

 0
.0

17
85

D
am

p:
 0

.6
 L

ik
el

ih
oo

d:
 0

.8

1.
0

7:
 R

U
LE

 2
 (

re
m

ot
e

ex
pl

oi
t o

f a
 s

er
ve

r
pr

og
ra

m
)

R
an

k:
 0

.0
18

23
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

0.
5

8:
 n

et
A

cc
es

s(
pc

1,
tc

p,
80

)
R

an
k:

 0
.0

31
02

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 1

.0

1.
0

12
: n

et
w

or
kS

er
vi

ce
In

fo
(p

c1
,s

er
vi

ce
,tc

p,
80

,s
er

vi
ce

ac
co

un
t)

R
an

k:
 0

.0
31

02
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

13
: v

ul
E

xi
st

s(
pc

1,
vu

l1
,s

er
vi

ce
,r

em
ot

eE
xp

lo
it,

pr
iv

E
sc

al
at

io
n)

R
an

k:
 0

.0
31

02
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 0
.5

1.
0

9:
 R

U
LE

 6
 (

di
re

ct
 n

et
w

or
k

ac
ce

ss
)

R
an

k:
 0

.0
52

8
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

10
: h

ac
l(a

,p
c1

,tc
p,

80
)

R
an

k:
 0

.0
89

85
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

21
: a

tta
ck

er
Lo

ca
te

d(
a)

R
an

k:
 0

.2
09

66
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

15
: h

ac
l(p

c2
,g

oa
l,t

cp
,8

0)
R

an
k:

 0
.0

17
85

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 1

.0

1.
0

16
: e

xe
cC

od
e(

pc
2,

se
rv

ic
ea

cc
ou

nt
)

R
an

k:
 0

.0
17

85
D

am
p:

 0
.8

 L
ik

el
ih

oo
d:

 0
.4

1.
0

17
: R

U
LE

 2
 (

re
m

ot
e

ex
pl

oi
t o

f a
 s

er
ve

r
pr

og
ra

m
)

R
an

k:
 0

.0
24

3
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

0.
5

18
: n

et
A

cc
es

s(
pc

2,
tc

p,
80

)
R

an
k:

 0
.0

41
36

D
am

p:
 1

.0
 L

ik
el

ih
oo

d:
 1

.0

1.
0

22
: n

et
w

or
kS

er
vi

ce
In

fo
(p

c2
,s

er
vi

ce
,tc

p,
80

,s
er

vi
ce

ac
co

un
t)

R
an

k:
 0

.0
41

36
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

23
: v

ul
E

xi
st

s(
pc

2,
vu

l2
,s

er
vi

ce
,r

em
ot

eE
xp

lo
it,

pr
iv

E
sc

al
at

io
n)

R
an

k:
 0

.0
41

36
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 0
.5

1.
0

19
: R

U
LE

 6
 (

di
re

ct
 n

et
w

or
k

ac
ce

ss
)

R
an

k:
 0

.0
70

39
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

1.
0

20
: h

ac
l(a

,p
c2

,tc
p,

80
)

R
an

k:
 0

.1
19

8
D

am
p:

 1
.0

 L
ik

el
ih

oo
d:

 1
.0

1.
0

Figure B.1: Attack graph for the Experiment 1b scenario

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 35

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 36 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Annex C: Experiment 2a Attack Graph
1: execCode(f,serviceaccount)

Rank: 0.02209
Damp: 0.8131072 Likelihood: 0.2

2: RULE 2 (remote exploit of a server program)
Rank: 0.01983

Damp: 1.0 Likelihood: 1.0

0.065536

3: netAccess(f,tcp,80)
Rank: 0.0219

Damp: 1.0 Likelihood: 0.0

1.0

51: networkServiceInfo(f,service,tcp,80,serviceaccount)
Rank: 0.0219

Damp: 1.0 Likelihood: 1.0

1.0

52: vulExists(f,vulid5,service,remoteExploit,privEscalation)
Rank: 0.0219

Damp: 1.0 Likelihood: 0.8

1.0

4: RULE 5 (multi-hop access)
Rank: 0.02419

Damp: 1.0 Likelihood: 0.5

0.08192

5: hacl(e,f,tcp,80)
Rank: 0.02671

Damp: 1.0 Likelihood: 0.8

1.0

6: execCode(e,serviceaccount)
Rank: 0.02671

Damp: 0.84096 Likelihood: 0.2

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.02481

Damp: 1.0 Likelihood: 1.0

0.2048

8: netAccess(e,tcp,80)
Rank: 0.0274

Damp: 1.0 Likelihood: 0.0

1.0

49: networkServiceInfo(e,service,tcp,80,serviceaccount)
Rank: 0.0274

Damp: 1.0 Likelihood: 1.0

1.0

50: vulExists(e,vulid4,service,remoteExploit,privEscalation)
Rank: 0.0274

Damp: 1.0 Likelihood: 0.8

1.0

9: RULE 5 (multi-hop access)
Rank: 0.01513

Damp: 1.0 Likelihood: 0.5

0.256

47: RULE 5 (multi-hop access)
Rank: 0.01513

Damp: 1.0 Likelihood: 0.5

0.256

10: hacl(c,e,tcp,80)
Rank: 0.01671

Damp: 1.0 Likelihood: 0.8

1.0

11: execCode(c,serviceaccount)
Rank: 0.02853

Damp: 0.928 Likelihood: 0.2

1.0

12: RULE 2 (remote exploit of a server program)
Rank: 0.02924

Damp: 1.0 Likelihood: 1.0

0.64

13: netAccess(c,tcp,80)
Rank: 0.03229

Damp: 1.0 Likelihood: 0.0

1.0

45: networkServiceInfo(c,service,tcp,80,serviceaccount)
Rank: 0.03229

Damp: 1.0 Likelihood: 1.0

1.0

46: vulExists(c,vulid2,service,remoteExploit,privEscalation)
Rank: 0.03229

Damp: 1.0 Likelihood: 0.8

1.0

14: RULE 5 (multi-hop access)
Rank: 0.00696

Damp: 1.0 Likelihood: 0.5

0.256

40: RULE 5 (multi-hop access)
Rank: 0.00696

Damp: 1.0 Likelihood: 0.5

0.256

42: RULE 6 (direct network access)
Rank: 0.02175

Damp: 1.0 Likelihood: 1.0

0.8

15: hacl(b,c,tcp,80)
Rank: 0.00768

Damp: 1.0 Likelihood: 0.8

1.0

16: execCode(b,serviceaccount)
Rank: 0.01537

Damp: 0.928 Likelihood: 0.2

1.0

17: RULE 2 (remote exploit of a server program)
Rank: 0.01575

Damp: 1.0 Likelihood: 1.0

0.64

18: netAccess(b,tcp,80)
Rank: 0.01739

Damp: 1.0 Likelihood: 0.0

1.0

38: networkServiceInfo(b,service,tcp,80,serviceaccount)
Rank: 0.01739

Damp: 1.0 Likelihood: 1.0

1.0

39: vulExists(b,vulid1,service,remoteExploit,privEscalation)
Rank: 0.01739

Damp: 1.0 Likelihood: 0.8

1.0

19: RULE 5 (multi-hop access)
Rank: 0.00375

Damp: 1.0 Likelihood: 0.5

0.256

21: RULE 5 (multi-hop access)
Rank: 0.00375

Damp: 1.0 Likelihood: 0.5

0.256

35: RULE 6 (direct network access)
Rank: 0.01171

Damp: 1.0 Likelihood: 1.0

0.8

1.0

20: hacl(c,b,tcp,80)
Rank: 0.00414

Damp: 1.0 Likelihood: 0.8

1.0

22: hacl(d,b,tcp,80)
Rank: 0.00414

Damp: 1.0 Likelihood: 0.8

1.0

23: execCode(d,root)
Rank: 0.02853

Damp: 0.928 Likelihood: 0.2

1.0

24: RULE 2 (remote exploit of a server program)
Rank: 0.02924

Damp: 1.0 Likelihood: 1.0

0.64

25: netAccess(d,tcp,80)
Rank: 0.03229

Damp: 1.0 Likelihood: 0.0

1.0

33: networkServiceInfo(d,service,tcp,80,root)
Rank: 0.03229

Damp: 1.0 Likelihood: 1.0

1.0

34: vulExists(d,vulid1,service,remoteExploit,privEscalation)
Rank: 0.03229

Damp: 1.0 Likelihood: 0.8

1.0

26: RULE 5 (multi-hop access)
Rank: 0.00696

Damp: 1.0 Likelihood: 0.5

0.256

28: RULE 5 (multi-hop access)
Rank: 0.00696

Damp: 1.0 Likelihood: 0.5

0.256

30: RULE 6 (direct network access)
Rank: 0.02175

Damp: 1.0 Likelihood: 1.0

0.8

1.0

27: hacl(b,d,tcp,80)
Rank: 0.00768

Damp: 1.0 Likelihood: 0.8

1.0

1.0

29: hacl(c,d,tcp,80)
Rank: 0.00768

Damp: 1.0 Likelihood: 0.8

1.0

31: hacl(a,d,tcp,80)
Rank: 0.02401

Damp: 1.0 Likelihood: 0.8

1.0

44: attackerLocated(a)
Rank: 0.06096

Damp: 1.0 Likelihood: 1.0

1.0

1.0

36: hacl(a,b,tcp,80)
Rank: 0.01294

Damp: 1.0 Likelihood: 0.8

1.0

1.0

41: hacl(d,c,tcp,80)
Rank: 0.00768

Damp: 1.0 Likelihood: 0.8

1.0

1.0

43: hacl(a,c,tcp,80)
Rank: 0.02401

Damp: 1.0 Likelihood: 0.8

1.0 1.0

48: hacl(d,e,tcp,80)
Rank: 0.01671

Damp: 1.0 Likelihood: 0.8

1.0

Figure C.1: Attack graph for the Experiment 2a scenario

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 37

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 38 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Annex D: Experiment 2b Attack Graph
1: execCode(f,serviceaccount)

Rank: 0.02241
Damp: 0.8131072 Likelihood: 0.2

2: RULE 2 (remote exploit of a server program)
Rank: 0.02041

Damp: 1.0 Likelihood: 1.0

0.065536

3: netAccess(f,tcp,80)
Rank: 0.02286

Damp: 1.0 Likelihood: 0.0

1.0

51: networkServiceInfo(f,service,tcp,80,serviceaccount)
Rank: 0.02286

Damp: 1.0 Likelihood: 1.0

1.0

52: vulExists(f,vulid5,service,remoteExploit,privEscalation)
Rank: 0.02286

Damp: 1.0 Likelihood: 0.8

1.0

4: RULE 5 (multi-hop access)
Rank: 0.02561

Damp: 1.0 Likelihood: 0.5

0.08192

5: hacl(e,f,tcp,80)
Rank: 0.02869

Damp: 1.0 Likelihood: 0.8

1.0

6: execCode(e,serviceaccount)
Rank: 0.02869

Damp: 0.84096 Likelihood: 0.2

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.02703

Damp: 1.0 Likelihood: 1.0

0.2048

8: netAccess(e,tcp,80)
Rank: 0.03028

Damp: 1.0 Likelihood: 0.0

1.0

49: networkServiceInfo(e,service,tcp,80,serviceaccount)
Rank: 0.03028

Damp: 1.0 Likelihood: 1.0

1.0

50: vulExists(e,vulid4,service,remoteExploit,privEscalation)
Rank: 0.03028

Damp: 1.0 Likelihood: 0.8

1.0

9: RULE 5 (multi-hop access)
Rank: 0.00678

Damp: 1.0 Likelihood: 0.5

0.064

47: RULE 5 (multi-hop access)
Rank: 0.02714

Damp: 1.0 Likelihood: 0.5

0.256

10: hacl(c,e,tcp,80)
Rank: 0.0076

Damp: 1.0 Likelihood: 0.8

1.0

11: execCode(c,serviceaccount)
Rank: 0.0122

Damp: 0.832 Likelihood: 0.2

1.0

12: RULE 2 (remote exploit of a server program)
Rank: 0.01137

Damp: 1.0 Likelihood: 1.0

0.16

13: netAccess(c,tcp,80)
Rank: 0.01273

Damp: 1.0 Likelihood: 0.0

1.0

45: networkServiceInfo(c,service,tcp,80,serviceaccount)
Rank: 0.01273

Damp: 1.0 Likelihood: 1.0

1.0

46: vulExists(c,vulid2,service,remoteExploit,privEscalation)
Rank: 0.01273

Damp: 1.0 Likelihood: 0.2

1.0

14: RULE 5 (multi-hop access)
Rank: 0.00278

Damp: 1.0 Likelihood: 0.5

0.256

40: RULE 5 (multi-hop access)
Rank: 0.00278

Damp: 1.0 Likelihood: 0.5

0.256

42: RULE 6 (direct network access)
Rank: 0.0087

Damp: 1.0 Likelihood: 1.0

0.8

15: hacl(b,c,tcp,80)
Rank: 0.00312

Damp: 1.0 Likelihood: 0.8

1.0

16: execCode(b,serviceaccount)
Rank: 0.01611

Damp: 0.928 Likelihood: 0.2

1.0

17: RULE 2 (remote exploit of a server program)
Rank: 0.01675

Damp: 1.0 Likelihood: 1.0

0.64

18: netAccess(b,tcp,80)
Rank: 0.01877

Damp: 1.0 Likelihood: 0.0

1.0

38: networkServiceInfo(b,service,tcp,80,serviceaccount)
Rank: 0.01877

Damp: 1.0 Likelihood: 1.0

1.0

39: vulExists(b,vulid1,service,remoteExploit,privEscalation)
Rank: 0.01877

Damp: 1.0 Likelihood: 0.8

1.0

19: RULE 5 (multi-hop access)
Rank: 0.0012

Damp: 1.0 Likelihood: 0.5

0.064

21: RULE 5 (multi-hop access)
Rank: 0.00481

Damp: 1.0 Likelihood: 0.5

0.256

35: RULE 6 (direct network access)
Rank: 0.01502

Damp: 1.0 Likelihood: 1.0

0.8

1.0

20: hacl(c,b,tcp,80)
Rank: 0.00135

Damp: 1.0 Likelihood: 0.8

1.0

22: hacl(d,b,tcp,80)
Rank: 0.00538

Damp: 1.0 Likelihood: 0.8

1.0

23: execCode(d,root)
Rank: 0.0389

Damp: 0.928 Likelihood: 0.2

1.0

24: RULE 2 (remote exploit of a server program)
Rank: 0.04044

Damp: 1.0 Likelihood: 1.0

0.64

25: netAccess(d,tcp,80)
Rank: 0.04531

Damp: 1.0 Likelihood: 0.0

1.0

33: networkServiceInfo(d,service,tcp,80,root)
Rank: 0.04531

Damp: 1.0 Likelihood: 1.0

1.0

34: vulExists(d,vulid1,service,remoteExploit,privEscalation)
Rank: 0.04531

Damp: 1.0 Likelihood: 0.8

1.0

26: RULE 5 (multi-hop access)
Rank: 0.0116

Damp: 1.0 Likelihood: 0.5

0.256

28: RULE 5 (multi-hop access)
Rank: 0.0029

Damp: 1.0 Likelihood: 0.5

0.064

30: RULE 6 (direct network access)
Rank: 0.03625

Damp: 1.0 Likelihood: 1.0

0.8

1.0

27: hacl(b,d,tcp,80)
Rank: 0.013

Damp: 1.0 Likelihood: 0.8

1.0

1.0

29: hacl(c,d,tcp,80)
Rank: 0.00325

Damp: 1.0 Likelihood: 0.8

1.0

31: hacl(a,d,tcp,80)
Rank: 0.04061

Damp: 1.0 Likelihood: 0.8

1.0

44: attackerLocated(a)
Rank: 0.06718

Damp: 1.0 Likelihood: 1.0

1.0

1.0

36: hacl(a,b,tcp,80)
Rank: 0.01682

Damp: 1.0 Likelihood: 0.8

1.0

1.0

41: hacl(d,c,tcp,80)
Rank: 0.00312

Damp: 1.0 Likelihood: 0.8

1.0

1.0

43: hacl(a,c,tcp,80)
Rank: 0.00974

Damp: 1.0 Likelihood: 0.8

1.0 1.0

48: hacl(d,e,tcp,80)
Rank: 0.0304

Damp: 1.0 Likelihood: 0.8

1.0

Figure D.1: Attack graph for the Experiment 2b scenario

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 39

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

This page intentionally left blank.

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 40 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Annex E: Experiment 3 Attack Graph
1: execCode(commServer,root)

Rank: 0.01053
Damp: 1.0 Likelihood: 0.0

2: RULE 2 (remote exploit of a server program)
Rank: 0.01109

Damp: 1.0 Likelihood: 1.0

0.0096

3: netAccess(commServer,iccpProtocol,iccpPort)
Rank: 0.01169

Damp: 1.0 Likelihood: 0.0

1.0

144: networkServiceInfo(commServer,iccpService,iccpProtocol,iccpPort,root)
Rank: 0.01169

Damp: 1.0 Likelihood: 1.0

1.0

145: vulExists(commServer,iccpVulnerability,iccpService,remoteExploit,privEscalation)
Rank: 0.01169

Damp: 1.0 Likelihood: 0.8

1.0

4: RULE 5 (multi-hop access)
Rank: 0.01231

Damp: 1.0 Likelihood: 0.5

0.012

5: hacl(dataHistorian,commServer,iccpProtocol,iccpPort)
Rank: 0.01297

Damp: 1.0 Likelihood: 1.0

1.0

6: execCode(dataHistorian,root)
Rank: 0.01297

Damp: 1.0 Likelihood: 0.0

1.0

7: RULE 2 (remote exploit of a server program)
Rank: 0.01366

Damp: 1.0 Likelihood: 1.0

0.024

8: netAccess(dataHistorian,sqlProtocol,sqlPort)
Rank: 0.01438

Damp: 1.0 Likelihood: 0.0

1.0

142: networkServiceInfo(dataHistorian,oracleSqlServer,sqlProtocol,sqlPort,root)
Rank: 0.01438

Damp: 1.0 Likelihood: 1.0

1.0

143: vulExists(dataHistorian,oracleSqlVulnerability,oracleSqlServer,remoteExploit,privEscalation)
Rank: 0.01438

Damp: 1.0 Likelihood: 0.4

1.0

9: RULE 5 (multi-hop access)
Rank: 0.00446

Damp: 1.0 Likelihood: 0.5

0.025

140: RULE 5 (multi-hop access)
Rank: 0.01069

Damp: 1.0 Likelihood: 0.5

0.06

141: hacl(citrixServer,dataHistorian,sqlProtocol,sqlPort)
Rank: 0.01596

Damp: 1.0 Likelihood: 1.0

1.0

11: execCode(citrixServer,normalAccount)
Rank: 0.00559

Damp: 1.0 Likelihood: 0.0

1.0

12: RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)
Rank: 0.00589

Damp: 1.0 Likelihood: 0.5

0.05

13: canAccessHost(citrixServer)
Rank: 0.0062

Damp: 1.0 Likelihood: 0.0

1.0

65: principalCompromised(ordinaryEmployee)
Rank: 0.00976

Damp: 1.0 Likelihood: 0.0

1.0

139: hasAccount(ordinaryEmployee,citrixServer,normalAccount)
Rank: 0.00796

Damp: 1.0 Likelihood: 1.0

1.0

14: RULE 7 (Access a host through executing code on the machine)
Rank: 0.00212

Damp: 1.0 Likelihood: 1.0

0.12

124: RULE 8 (Access a host through a log-in service)
Rank: 0.00442

Damp: 1.0 Likelihood: 1.0

0.25

15: execCode(citrixServer,root)
Rank: 0.01661

Damp: 1.0 Likelihood: 0.0

1.0

16: RULE 4 (Trojan horse installation)
Rank: 0.0175

Damp: 1.0 Likelihood: 0.2

0.12

17: accessFile(citrixServer,write,’/usr/local/share’)
Rank: 0.01843

Damp: 1.0 Likelihood: 0.0

1.0

18: RULE 15 (NFS semantics)
Rank: 0.01941

Damp: 1.0 Likelihood: 1.0

0.6

19: accessFile(fileServer,write,’/export’)
Rank: 0.02511

Damp: 1.0 Likelihood: 0.0

1.0

123: nfsMounted(citrixServer,’/usr/local/share’,fileServer,’/export’,read)
Rank: 0.02045

Damp: 1.0 Likelihood: 1.0

1.0

20: RULE 16 (NFS shell)
Rank: 0.00085

Damp: 1.0 Likelihood: 0.6

0.03

23: RULE 16 (NFS shell)
Rank: 0.01706

Damp: 1.0 Likelihood: 0.6

0.6

120: RULE 16 (NFS shell)
Rank: 0.00853

Damp: 1.0 Likelihood: 0.6

0.3

1.0

21: hacl(citrixServer,fileServer,nfsProtocol,nfsPort)
Rank: 0.0009

Damp: 1.0 Likelihood: 1.0

1.0

22: nfsExportInfo(fileServer,’/export’,write,citrixServer)
Rank: 0.0009

Damp: 1.0 Likelihood: 1.0

1.0

24: hacl(webServer,fileServer,nfsProtocol,nfsPort)
Rank: 0.01797

Damp: 1.0 Likelihood: 1.0

1.0

25: nfsExportInfo(fileServer,’/export’,write,webServer)
Rank: 0.01797

Damp: 1.0 Likelihood: 1.0

1.0

26: execCode(webServer,apache)
Rank: 0.0253

Damp: 1.0 Likelihood: 0.1

1.0

27: RULE 2 (remote exploit of a server program)
Rank: 0.02665

Damp: 1.0 Likelihood: 1.0

1.0

28: netAccess(webServer,httpProtocol,httpPort)
Rank: 0.02807

Damp: 1.0 Likelihood: 0.0

1.0

118: networkServiceInfo(webServer,httpd,httpProtocol,httpPort,apache)
Rank: 0.02807

Damp: 1.0 Likelihood: 1.0

1.0

119: vulExists(webServer,’CAN-2002-0392’,httpd,remoteExploit,privEscalation)
Rank: 0.02807

Damp: 1.0 Likelihood: 1.0

1.0

29: RULE 5 (multi-hop access)
Rank: 0.00214

Damp: 1.0 Likelihood: 0.5

0.1

111: RULE 5 (multi-hop access)
Rank: 0.00536

Damp: 1.0 Likelihood: 0.5

0.25

113: RULE 5 (multi-hop access)
Rank: 0.00064

Damp: 1.0 Likelihood: 0.5

0.03

115: RULE 6 (direct network access)
Rank: 0.02143

Damp: 1.0 Likelihood: 1.0

1.0

30: hacl(vpnServer,webServer,httpProtocol,httpPort)
Rank: 0.00226

Damp: 1.0 Likelihood: 1.0

1.0

31: execCode(vpnServer,normalAccount)
Rank: 0.00354

Damp: 0.84 Likelihood: 0.2

1.0

32: RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)
Rank: 0.00313

Damp: 1.0 Likelihood: 0.5

0.2

33: canAccessHost(vpnServer)
Rank: 0.0033

Damp: 1.0 Likelihood: 0.0

1.0

1.0

110: hasAccount(ordinaryEmployee,vpnServer,normalAccount)
Rank: 0.0033

Damp: 1.0 Likelihood: 1.0

1.0

34: RULE 8 (Access a host through a log-in service)
Rank: 0.00348

Damp: 1.0 Likelihood: 1.0

1.0

35: netAccess(vpnServer,vpnProtocol,vpnPort)
Rank: 0.00366

Damp: 1.0 Likelihood: 0.0

1.0

107: logInService(vpnServer,vpnProtocol,vpnPort)
Rank: 0.00366

Damp: 1.0 Likelihood: 0.0

1.0

36: RULE 5 (multi-hop access)
Rank: 0.00107

Damp: 1.0 Likelihood: 0.5

0.5

38: RULE 5 (multi-hop access)
Rank: 0.00053

Damp: 1.0 Likelihood: 0.5

0.25

102: RULE 5 (multi-hop access)
Rank: 0.00013

Damp: 1.0 Likelihood: 0.5

0.06

104: RULE 6 (direct network access)
Rank: 0.00213

Damp: 1.0 Likelihood: 1.0

1.0

1.0

37: hacl(webServer,vpnServer,vpnProtocol,vpnPort)
Rank: 0.00112

Damp: 1.0 Likelihood: 1.0

1.0

103: hacl(workStation,vpnServer,vpnProtocol,vpnPort)
Rank: 0.0007

Damp: 1.0 Likelihood: 1.0

1.0

40: execCode(workStation,normalAccount)
Rank: 0.02494

Damp: 0.8 Likelihood: 0.4

1.0

41: RULE 0 (When a principal is compromised any machine he has an account on will also be compromised)
Rank: 0.00024

Damp: 1.0 Likelihood: 0.5

0.00576

72: RULE 3 (remote exploit for a client program)
Rank: 0.02077

Damp: 1.0 Likelihood: 0.5

0.5

42: canAccessHost(workStation)
Rank: 0.00025

Damp: 1.0 Likelihood: 0.0

1.0

73: hasAccount(ordinaryEmployee,workStation,normalAccount)
Rank: 0.0312

Damp: 1.0 Likelihood: 1.0

1.0

1.0

43: RULE 7 (Access a host through executing code on the machine)
Rank: 0.00018

Damp: 1.0 Likelihood: 1.0

0.12

49: RULE 8 (Access a host through a log-in service)
Rank: 9e-05

Damp: 1.0 Likelihood: 1.0

0.06

44: execCode(workStation,root)
Rank: 0.00411

Damp: 0.648 Likelihood: 0.4

1.0

45: RULE 4 (Trojan horse installation)
Rank: 0.00281

Damp: 1.0 Likelihood: 0.2

0.12

46: accessFile(workStation,write,’/usr/local/share’)
Rank: 0.00296

Damp: 1.0 Likelihood: 0.0

1.0

47: RULE 15 (NFS semantics)
Rank: 0.00311

Damp: 1.0 Likelihood: 1.0

0.6

1.0

48: nfsMounted(workStation,’/usr/local/share’,fileServer,’/export’,read)
Rank: 0.00328

Damp: 1.0 Likelihood: 1.0

1.0

50: netAccess(workStation,tcp,sshProtocol)
Rank: 9e-05

Damp: 1.0 Likelihood: 0.0

1.0

61: logInService(workStation,tcp,sshProtocol)
Rank: 9e-05

Damp: 1.0 Likelihood: 0.0

1.0

51: RULE 5 (multi-hop access)
Rank: 3e-05

Damp: 1.0 Likelihood: 0.5

0.06

53: RULE 5 (multi-hop access)
Rank: 3e-05

Damp: 1.0 Likelihood: 0.5

0.06

57: RULE 5 (multi-hop access)
Rank: 1e-05

Damp: 1.0 Likelihood: 0.5

0.024

59: RULE 5 (multi-hop access)
Rank: 3e-05

Damp: 1.0 Likelihood: 0.5

0.06

1.0

52: hacl(citrixServer,workStation,tcp,sshProtocol)
Rank: 3e-05

Damp: 1.0 Likelihood: 1.0

1.0

54: hacl(fileServer,workStation,tcp,sshProtocol)
Rank: 3e-05

Damp: 1.0 Likelihood: 1.0

1.0

55: execCode(fileServer,root)
Rank: 0.00136

Damp: 0.912 Likelihood: 0.1

1.0

56: RULE 4 (Trojan horse installation)
Rank: 0.00131

Damp: 1.0 Likelihood: 0.2

0.12

1.0

1.0

58: hacl(vpnServer,workStation,tcp,sshProtocol)
Rank: 1e-05

Damp: 1.0 Likelihood: 1.0

1.0 1.0

60: hacl(workStation,workStation,tcp,sshProtocol)
Rank: 3e-05

Damp: 1.0 Likelihood: 1.0

1.0

62: RULE 12 ()
Rank: 0.0001

Damp: 1.0 Likelihood: 1.0

1.0

63: networkServiceInfo(workStation,sshd,tcp,sshProtocol,sshPort)
Rank: 0.0001

Damp: 1.0 Likelihood: 1.0

1.0

66: RULE 10 (password sniffing)
Rank: 0.00167

Damp: 1.0 Likelihood: 0.8

0.096

68: RULE 10 (password sniffing)
Rank: 0.00167

Damp: 1.0 Likelihood: 0.8

0.096

70: RULE 11 (password sniffing)
Rank: 0.00694

Damp: 1.0 Likelihood: 0.8

0.4

1.0

1.0

1.0

1.0

1.0

1.0

1.0

74: inCompetent(ordinaryEmployee)
Rank: 0.02188

Damp: 1.0 Likelihood: 1.0

1.0

75: canAccessMaliciousInput(workStation)
Rank: 0.02188

Damp: 1.0 Likelihood: 0.0

1.0

101: vulExists(workStation,browser_vulid,firefox,remoteExploit,privEscalation)
Rank: 0.02188

Damp: 1.0 Likelihood: 1.0

1.0

76: RULE 21 (Browsing a malicious website)
Rank: 0.01474

Damp: 1.0 Likelihood: 1.0

1.0

81: RULE 22 (Browsing a compromised website)
Rank: 0.00071

Damp: 1.0 Likelihood: 0.4

0.048

85: RULE 22 (Browsing a compromised website)
Rank: 0.00071

Damp: 1.0 Likelihood: 0.4

0.048

89: RULE 22 (Browsing a compromised website)
Rank: 0.00028

Damp: 1.0 Likelihood: 0.4

0.0192

93: RULE 22 (Browsing a compromised website)
Rank: 0.0059

Damp: 1.0 Likelihood: 0.4

0.4

97: RULE 22 (Browsing a compromised website)
Rank: 0.00071

Damp: 1.0 Likelihood: 0.4

0.048

117: attackerLocated(internet)
Rank: 0.04034

Damp: 1.0 Likelihood: 1.0

1.0

78: hacl(workStation,internet,httpProtocol,httpPort)
Rank: 0.01553

Damp: 1.0 Likelihood: 1.0

1.0

99: isWebBrowser(firefox)
Rank: 0.02428

Damp: 1.0 Likelihood: 1.0

1.0

100: installed(workStation,firefox)
Rank: 0.02428

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.01.0

82: hacl(workStation,citrixServer,httpProtocol,httpPort)
Rank: 0.00075

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.01.0

86: hacl(workStation,fileServer,httpProtocol,httpPort)
Rank: 0.00075

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.01.0

90: hacl(workStation,vpnServer,httpProtocol,httpPort)
Rank: 0.0003

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.01.0

114: hacl(workStation,webServer,httpProtocol,httpPort)
Rank: 0.01253

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.01.0

98: hacl(workStation,workStation,httpProtocol,httpPort)
Rank: 0.00075

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.0

1.0

105: hacl(internet,vpnServer,vpnProtocol,vpnPort)
Rank: 0.00224

Damp: 1.0 Likelihood: 1.0

1.0

108: RULE 13 ()
Rank: 0.00386

Damp: 1.0 Likelihood: 1.0

1.0

109: networkServiceInfo(vpnServer,vpnService,vpnProtocol,vpnPort,root)
Rank: 0.00406

Damp: 1.0 Likelihood: 1.0

1.01.0

1.0

1.0

1.0

1.0

116: hacl(internet,webServer,httpProtocol,httpPort)
Rank: 0.02257

Damp: 1.0 Likelihood: 1.0

1.0

1.0

121: hacl(workStation,fileServer,nfsProtocol,nfsPort)
Rank: 0.00899

Damp: 1.0 Likelihood: 1.0

1.0

122: nfsExportInfo(fileServer,’/export’,write,workStation)
Rank: 0.00899

Damp: 1.0 Likelihood: 1.0

1.0

125: netAccess(citrixServer,sshProtocol,sshPort)
Rank: 0.00465

Damp: 1.0 Likelihood: 0.0

1.0

136: logInService(citrixServer,sshProtocol,sshPort)
Rank: 0.00465

Damp: 1.0 Likelihood: 0.0

1.0

126: RULE 5 (multi-hop access)
Rank: 0.00055

Damp: 1.0 Likelihood: 0.5

0.06

128: RULE 5 (multi-hop access)
Rank: 0.00055

Damp: 1.0 Likelihood: 0.5

0.06

130: RULE 5 (multi-hop access)
Rank: 0.00092

Damp: 1.0 Likelihood: 0.5

0.1

132: RULE 5 (multi-hop access)
Rank: 0.00231

Damp: 1.0 Likelihood: 0.5

0.25

134: RULE 5 (multi-hop access)
Rank: 0.00055

Damp: 1.0 Likelihood: 0.5

0.06

1.0

127: hacl(citrixServer,citrixServer,sshProtocol,sshPort)
Rank: 0.00058

Damp: 1.0 Likelihood: 1.0

1.0

1.0

129: hacl(fileServer,citrixServer,sshProtocol,sshPort)
Rank: 0.00058

Damp: 1.0 Likelihood: 1.0

1.0

1.0

131: hacl(vpnServer,citrixServer,sshProtocol,sshPort)
Rank: 0.00097

Damp: 1.0 Likelihood: 1.0

1.0

1.0

135: hacl(workStation,citrixServer,sshProtocol,sshPort)
Rank: 0.00302

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.0

137: RULE 12 ()
Rank: 0.0049

Damp: 1.0 Likelihood: 1.0

1.0

138: networkServiceInfo(citrixServer,sshd,sshProtocol,sshPort,root)
Rank: 0.00516

Damp: 1.0 Likelihood: 1.0

1.0

1.0

1.0

Figure E.1: Attack graph for the Experiment 3 scenario

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 41

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

References

[1] Sawilla, R. E. and Ou, X. (2008), Identifying Critical Attack Assets in Dependency
Attack Graphs,Proceedings of the 13th European Symposium on Research in
Computer Security, 13, 18–34.

[2] Sawilla, R. E. and Ou, X. (2007), Googling Attack Graphs, (DRDC Ottawa TM
2007-205) Defence R&D Canada – Ottawa.

[3] Ammann, P., Wijesekera, D., and Kaushik, S. (2002), Scalable, Graph-Based
Network Vulnerability Analysis, InProceedings of 9th ACM Conference on
Computer and Communications Security, Washington, DC.

[4] Ingols, K., Lippmann, R., and Piwowarski, K. (2006), Practical Attack Graph
Generation for Network Defense, In22nd Annual Computer Security Applications
Conference (ACSAC), Miami Beach, Florida.

[5] Noel, S., Jajodia, S., O’Berry, B., and Jacobs, M. (2003), Efficient Minimum-Cost
Network Hardening via Exploit Dependency Graphs, In19th Annual Computer
Security Applications Conference (ACSAC).

[6] Ou, X., Boyer, W. F., and McQueen, M. A. (2006), A scalable approach to attack
graph generation, In13th ACM Conference on Computer and Communications
Security (CCS), pp. 336–345.

[7] Phillips, C. and Swiler, L. P. (1998), A graph-based system for network-vulnerability
analysis, InNSPW ’98: Proceedings of the 1998 workshop on New security
paradigms, pp. 71–79, ACM Press.

[8] Sheyner, O., Haines, J., Jha, S., Lippmann, R., and Wing, J. M. (2002), Automated
generation and analysis of attack graphs, InProceedings of the 2002 IEEE
Symposium on Security and Privacy, pp. 254–265.

[9] Noel, S. and Jajodia, S. (2004), Managing attack graph complexity through visual
hierarchical aggregation, InVizSEC/DMSEC ’04: Proceedings of the 2004 ACM
workshop on Visualization and data mining for computer security, pp. 109–118,
New York, NY, USA: ACM Press.

[10] Noel, S., Jacobs, M., Kalapa, P., and Jajodia, S. (2005), Multiple Coordinated Views
for Network Attack Graphs, InIEEE Workshop on Visualization for Computer
Security (VizSEC 2005).

[11] Lippmann, R., Williams, L., and Ingols, K. (2007), An Interactive Attack Graph
Cascade and Reachability Display, InIEEE Workshop on Visualization for Computer
Security (VizSEC 2007).

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 42 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

[12] Page, L., Brin, S., Motwani, R., and Winograd, T. (1998), The PageRank Citation
Ranking: Bringing Order to the Web, Technical Report Stanford Digital Library
Technologies Project.

[13] Mehta, V., Bartzis, C., Zhu, H., Clarke, E., and Wing, J. (2006), Ranking Attack
Graphs, InProceedings of Recent Advances in Intrusion Detection (RAID).

[14] Sheyner, O. (2004), Scenario Graphs and Attack Graphs, Ph.D. thesis, Carnegie
Mellon.

[15] Swiler, L. P., Phillips, C., Ellis, D., and Chakerian, S. (2001), Computer-Attack
Graph Generation Tool, InDARPA Information Survivability Conference and
Exposition (DISCEX II’01), Vol. 2.

[16] Meyer, C. D. (2000), Matrix analysis and applied linear algebra, Philadelphia, PA,
USA: Society for Industrial and Applied Mathematics.

[17] Bianchini, M., Gori, M., and Scarselli, F. (2005), Inside PageRank,ACM Trans.
Inter. Tech., 5(1), 92–128.

[18] Ellson, J., Gansner, E. R., Koutsofios, E., North, S. C., and Woodhull, G. (2001),
Graphviz - Open Source Graph Drawing Tools,Graph Drawing, pp. 483–484.

[19] Wang, L., Singhal, A., and Jajodia, S. (2007), Measuring Network Security Using
Attack Graphs, InThird Workshop on Quality of Protection (QoP).

[20] Dewri, R., Poolsappasit, N., Ray, I., and Whitley, D. (2007), Optimal Security
Hardening Using Multi-objective Optimization on Attack Tree Models of Networks,
In 14th ACM Conference on Computer and Communications Security (CCS).

[21] Jha, S., Sheyner, O., and Wing, J. M. (2002), Two Formal Analyses of Attack
Graphs, InProceedings of the 15th IEEE Computer Security Foundations Workshop,
pp. 49–63, Nova Scotia, Canada.

[22] Homer, J., Varikuti, A., Ou, X., and McQueen, M. A. (2008), Improving Attack
Graph Visualization through Data Reduction and Attack Grouping, InThe 5th
International Workshop on Visualization for Cyber Security (VizSEC).

Identifying Critical Attack Assets in Dependency Attack Graphs

RTO-MP-IST-076 11 - 43

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

Identifying Critical Attack Assets in Dependency Attack Graphs

11 - 44 RTO-MP-IST-076

UNCLASSIFIED/UNLIMITED

UNCLASSIFIED/UNLIMITED

